附件 6:

关于生活垃圾不再进场的说明文件

诸城市生活垃圾填埋场工程于 2011 年 10 月开工 建设,2012 年 5 月生活垃圾填埋场建设完成。2012 年 5 月 7 日经诸城市环境保护局以《关于诸城市生活垃圾 填埋场试运行的批复》批准试运行。

自 2020 年 9 月 1 日起,一期工程生活垃圾填埋场生活垃圾不再进场,并于 2022 年之前完成生活垃圾填埋场封场工作,特此说明。

附件7:

程告编号: MSD-21031043-HJ-01 页码: 2 /6

检测报告

委托单位	山东省鲁环生态环境检测评估中心				
委托单位地址	济南市工业南路丁豪广场 4 号楼 1 单元 3 楼				
受测单位	诸城宝灏新能源发电有限公司				
受割单位地址	山东省潍坊市诸城市密州街道王台头村				
项目名称	/		100		
接样日期	2021年03月25日	检测日期	2021年04月01日-04月02日		
各注	1.	BP			

50

W: APP PAP

181

核:

量鹏游

批

准:

孤安明

签发日期

2021.04.06

济南市高新区创新谷合新 2025 项目 6-3-6

0531-6658 0625 www.weipugroup.com

报告编号: MSD-21031043-KU-01 页码: 3 /6

1.检测结果:

1.1 固体废物

样品名称	检测项目	样品编号	检测结果	GB 16889-2008 生活垃圾填埋场 污染控制标准 表 1	检出限	单位	
	含水率		15,0	<30%		76	
	大价格		ND	1.5	0.004	mg/L	
	40		0.12	0.25	0.06	mg/L	
	19		58.4	100	0.06	mg/L	
	\$75		0.10	0.15	0.05	mg/L	
	朝		0.255	40	3×10°3	mg/L	
2021年3月22	12		0.201	0.5	1×10°	mg/L	
日飞灰样品	板	- 210310430101 -	8.77×10 ⁻³	0.02	1×10 ⁻⁴	mg/L	
	钡		0.857	25	2.5×10 ⁻³	mg/L	
	总格		5.96×10 ⁻²	4.5	7×10 ⁻⁴	mg/L	
	汞		4.95×10 ⁻³	0.05	2×10 ⁻⁵	mg/L	
		种		1.88×10 ⁻²	0.3	1×10 ⁻⁴	mg/L
		65		1.25×10 ⁻²	0.1	1×10 ⁻⁴	mg/L
	二噁英类		1.3×10 ²	3000	***	ng TEQ/kg	

本页结束

济南市高新区创新谷会新 2025 项目 6-3-6 0531-6658 0625 www.weipugroup.com

报告编号/ MSD-21031043-HJ-01 页码: 4 /6

表 1 固体废弃物检测结果

样品名料	2	2021 4-3	月22日飞灰样		
	检测项目	实测浓度	校出限	毒性当量(TEQ)	
-		ng/kg	ng/kg	TEF	ng/kg
	2,3,7,8-T ₄ CDF	48.	0.2	0.1	4.8
2	1,2,3,7,8- P ₁ CDF	70	0.2	0.05	3.5
	2,3,4,7,8-P ₅ CDF	90	0.2	0.5	45
II.	1,2,3,4,7,8- H ₀ CDF	73	0.1	0.1	7.3
R	1,2,3,6,7,8- H ₆ CDF	88	0.2	0.1	8.8
苯并	2,3,4,6,7,8- H ₆ CDF	1.0×10 ²	0.2	0.1	10
块	1,2,3,7,8,9- H ₆ CDF	13	0.2	0.1	1.3
箱	1,2,3,4,6,7,8- H ₂ CDF	2.3×10 ²	0.2	0.01	2.3
	1,2,3,4,7,8,9- H ₂ CDF	25	0.3	0.01	0.25
	O _I CDF	32	0.3	0.001	0.032
多数代	2,3,7,8-T ₄ CDD	4.7	0.1	1	4.7
	1,2,3,7,8- P ₃ CDD	22	0.2	0.5	11
	1,2,3,4,7,8- H ₄ CDD	38	0.1	0.1	3.8
#	1,2,3,6,7,8- H ₆ CDD	1.0×10 ²	0.2	0.1	10
对。二唱英	1,2,3,7,8,9- H ₆ CDD	60	0.2	0.1	6.0
	1,2,3,4,6,7,8-H ₂ CDD	1.1×10 ³	0.3	0.01	11
	O _I CDD	2.8×10 ³	0.3	0.001	2.8
- 50 3	長島量至 (PCDDs+PCDFs)		_		1.3×10 ²

- 注: 1. 实面浓度: 样品中二噁英类质量浓度测定值 (ng/kg)。
 - 2. 毒性当量因子(TEF)。采用国际毒性当量因子1-TEF 定义。
 - 3. 毒性治量(TEQ)质量浓度、折算为相当于 2.3,7,8-T₄CDD 的质量浓度(ng/kg)。
 - 4. 当实施质量浓度低于检出限时"N.D."表示。计算器性当量(TEQ)质量浓度时以1/2检出限计算。

本页结束

特品类別 检测点位	2. 代表性附件: 2.1 样品信息					0310日-10-01 页码。5 /6	
日本		6	2割点位	样品名称		样品状态	
投資名称 型号 投資額号 投資額号 中共和国	固体废弃物		送样		灰桿		
电热恒温鼓风干燥箱 DHG-9140A 1150L0415 万分位天平 ME204/02 1150G0305 pH 计 PHS-3E 1150L0105 量外分光光度计 UV-1800PC 1150L0102 电子天平 JY20002 1150G0302 原子吸收分光光度计 AA-7020 1150W0101	2.2 仪器信息						
万分位天平 ME204/02 1150G0305 pH 计 PHS-3E 1150L0105 蒙外分光光度计 UV-1800PC 1150L0102 电子天平 JY20002 1150G0302 厚子吸收分光光度计 AA-7020 1150W0101 展子实光光度计 AFS-9730 1150W0102	设备名称		3	119		设备编号	
pH 计 PHS-3E 1150L0105 素外分光光度计 UV-1800PC 1150L0102 电子天平 JY20002 1150G0302 厚子吸收分光光度计 AA-7020 1150W0101 展子类光光度计 AFS-9730 1150W0102	电热恒温鼓风干炸	是和	DHC	i-9140A		1150L0415	
索外分充充度计 UV-1800PC 1150L0102 电子天平 JY20002 1150G0302 原子吸收分充充度计 AA-7020 1150W0101 展子实充充度计 AFS-9730 1150W0102	万分位天平		ME	204/02		1150G0305	
电子天平 JY20002 1150G0302 原子吸收分光光度计 AA-7020 1150W0101 原子供允允度计 AFS-9730 1150W0102	pH if		Pl	IS-3E	1150L0105		
原子吸收分光光度计 AA-7020 1150W0101 原子实光光度计 AFS-9730 1150W0102			UV-	1800PC		1150L0102	
展于类允允度计 AFS-9730 1150W0102			JY20002		1150G0302		
ALL PROPERTY.	算子吸收分兆光	gii	A/	A-7020		1150W0101	
高分辨气和-高分辨质谱仪 DFS 1150E0101	展子类先先度	it	AF	S-9730		1150W0102	
	高分辨气和-高分辨质谱仪		DFS			1150E0101	
	高分詞气相-高分詞	旅遊仪		Drs		1130123101	

报告编号: MSD-21031043-HJ-01 页码: 6 /6

	and the second division in the last of the	mir baller -
	40-901	for PIE
2.3	PH 801	the the
Bear.	See a sec.	

3 检测标准		AT WALKENING			
样品类别	检测项目	检测标准			
	含水率	固体废物 浸出毒性浸出方法 醋酸缓冲溶液法 HJ/T 300-2007			
	六价格	固体废物 六价铬的测定 二苯磺酰二肼分光光度法 GB/15555.4-1995			
	朝	The second state of the state o			
	ŧQ.	固体废物 铍、镍、铜、钼的测定 石墨炉原子吸收分光光度法 H 752-2015			
	铍				
1,78	10	The second section is a second section to			
CAT (At whice the file	- 19	固体废物 铅、锌和镉的测定 火焰煤子吸收分光光度法 H 786-2016			
固体废弃物	61				
	248	固体废物 总铬的测定 石墨炉原子吸收分光光度法 HJ 750-2015			
	96	固体废物 假的测定 石墨炉原子吸收分光光度法 HJ 767-2015			
	59				
	65	固体废物 汞、砷、硒、铝、锑的测定 微波消解/原子荧光法 H 702-2014			
	汞				
	二喝英类	固体废物 二喝英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 HJ 77.3-2008			

报告给束

声明:

- 1.报告若未加盖"检验检赛专用章"、转键章、CMA 章和审核、批准人签字。一律无效、
- 2.本报告不得擅自修改、增加或删除, 否则一律无效。
- 3.未经本机构批准。不得部分复制本报告。否则无效。
- 4.如对报告有疑问。请在收到报告后 15 个工作日内提出。
- 5.山东微谱检测技术有限公司仅对送检样品的测试数据负责,委托方对送检样品及其相关信息的真实性负责。
- 6.除客户特别声明并支付样品管理费以外,所有样品超过标准或技术规范要求的时效期均不再留样。

语南市高新区创新谷会新 2025 项目 6-3-6 0531-6658 0625 www.weipugroup.com